
N _Z 72578

!

I,-,
I,,,-

<
t,,f)
<
Z

w nl

NASA TT F-54

TECHNICAL TRANSLATION

CONCERNING A METHOD FOR THE MEASUREMENT OF VERY HIGH

TEMPERATURES IN NEARLYT_NSPA1KENT ARC COLUMNS

By Rudolf Wilkhetm Larenz

Translation of "IJber ein Ver_ahren zur Messung sehr hoher

Temperaturen in nahezu durchl_ssigen Bogens_iulen. "

Zeitschrift tilt PhysLk, vol. 129, 1951.

NATIONAL

WASHINGTON

AERONAUTICS/AND SPACE ADMINISTRATION

December 1960



+

+,

:i



K

F

5
4

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL TRANSLATION F-54

CONCERNING A METHOD FOR TEE MEASUREMENT OF VERY HIGH

TEMPERATURES IN NEARLY TRANSPARENT ARC COLUMNS*

By Rudolf Wilhelm Larenz

By modifying astrophysical methods and enlarging on an idea

developed by Hormann, a method has been developed which permits

measurements up to extremely high temperatures in arc columns Eli.

i. INTRODUCTION

In the report presented here a spectrophotometric method is pre-

sented which permits the measurement of temperature distributions in

arc columns up to very high temperatures. In this particular methodj

an earlier method reported by H_rmann _] is being enlarged and made

useful for measurement of high temperatures by combining it with astro-

physical methods found by the Saha method by Fowler and Milne [3]. The

assumptions of Fowler and Milne must be adjusted for this purpose to the

physical conditions prevailing in an arc column.

In contrast to a method recently developed by H. Bartels E4] for

the measurement of high temperatures, which method assumes strong self

reversal of the lines used for measurement_ it is here assumed that the

absorption in the arc column is only very small in the spectral region

in which measurements are carried out. The application of this method is

*"_ber ein Verfahren zur Messung sehr hoher Temperaturen in nahezu

durchl_ssigen Bogensgulen." Zeitschrift f{[r Physik, vol. 129, 1951, pp. 327-342

(Presented at the meeting of the German Physical Society in the British Zone in

M'ttnster on April 15, 1950.)



further limited by the possibility that in the arc column_ temperatures can

be reached where the degree of ionization reacues the magnitude of i. In

section 2, the general basis for the method is given. In section 3_ the

formal bases are developed, and also the differences are treated which

arise when the calculation of Fowler and Milne are applied to a different

physical situation. In section 4 a theory of errors is developed, as far

as this can be possible in a general way.

§2. BASES OF THE METHOD

We assume local temperature equilibriur_ in the arc column. _Local

temperature equilibrium" is to be understood as meaning that the distribu-

tion of the energy among individual particles is given by a Boltzmann dis-

tribution. Therefore, it is not necessary that the radiation density also

reflect this temperature. The radiation density will always be very much

smaller under conditions required in the application of this method. Whether

the fiction of such a local temperature equilibrium has been sufficiently

approached in the arc column can be determined to a certain degree by

controls which will be further discussed below.

We further assume axial symmetry of the column and observe the

emission of rays in a plane perpendicular to that of the column axis. The

column points in this plane are related to a coordinate system whose origin

is placed at the column axis, the x-axis is ori,.'nted in the direction of ob-

servation, while the y-axis is perpendicular tc, that. Further, r is the radial

distance of a point from the column axis and ro is the column radius. The

observed rays parallel to the x-axis are uniquely defined by the distance y_.

from this column axis.

For the measurement of the temperature distribution, either a line

emission or emission in a continuum can be u_,;ed. The important assump-

tion in either case is that the absorption in the column is only very small

in the frequencies which are used for measurement. Possibilities on how

to control this assumption adequately will be discussed later.

We indicate the principle of this method first in the simplest possible
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case, by limiting ourselves to the measurement of a line. It is assumed

that the line emission is not disturbed by underlying continua. Then I(y) is

the total radiation density of the line emitted by a ray with axial distance y_..

The emission coefficient for this line is represented in its radial course by

t{r). If the absorption in the column can be neglected this yields

Z(y)=2 f _(]/_-_ax. (I)
o

IfI(y) is measured over the whole cross-section of the column, then c(r)

results from the solution of Abel's integral equation (1). If, on the other

hand, • can be calculated as a function of temperature T and pressure P,

then using

t(r) = t[T, P] {2)

the radial temperature distribution in the column can be determined at a

given pressure. The experimental application of this theoretically simple

method is made more difficult by the fact that under certain conditions,

great radiation densities must be measured absolutely. Furthermore, the

calculation of E(T,P,) will generally be limited by the fact that the transition

probabilities which enter E(T,P) as factors are known only insufficiently.

Both difficulties immediately disappear when for a giver, radius _ the tem-

perature T is known. Then equation (2) can be replaced by

_(r) e[T,P] -- E* [T, P]. (3)

The function **(r) can be determined by suitable normalizing if the relative

course of the function c(r) is known. A function c'(r) which represents the

relative course of E(r) correctly is obtained from the solution of the equa-

t.ion

_,r__'-_ y,

'(Y) =2 f _'(:_)dx (4a)I (o) o
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with

e(') (4b)
_' (r) = _ (o) "

Here it is only necessary to measure the function I(y)/I(o) which is generally

known in astrophysical usage as center-boundary variation. Furthermore,

in the function e*(T,P) the transition probability is eliminated, c*(T,P) can

generally be calculated with sufficient accuracy. In this way H6rmann deter-

mined the temperature decrease in a carbon arc by substituting for _ -- 0 a
N

value T which was determined from other measurements [5].

As long as the present method is dependent on the use of other tempera-

ture measurements, this method cannot lead to an independent temperature

measurement and is therefore not applicable for measurements in ranges in

which temperatures have not been previously" measured. An independent

temperature measurement based on the derivations above can only be made

if the standard temperature T(_) can be derived from equation (3). By anal-

ogy to the thought process of Fowler and Milne, it will now be shown that

such is possible, if the temperatures which can be achieved in the particular

light source are sufficiently high. In this connection, the temperatur e func-

tion of the emission coefficient at constant pressure will be considered in

general terms. The carrier of the line to be measured is the lth degree

ionized atom. Then the number o£ these atoms per unit volume is n 1,

whereby n/0 represents the ground state, and n_a, the excited state of the

Line whose transition probability is designated as A. Then

!
f_

A

• = _-a hv '_--_nl ° " _tO •

The fraction n/a/n/0 increases monotonically with increasing temperature,

and approaches, at sufficiently high temperature, a constant limiting value.

The behavior o£ n/0 is particularly simple wher_ dealing with the emission

o£ an arc line (I-- 0). Then n/o decreases monotonicaUy with increasing

temperature and approaches zero at sufficiently high temperature. The

causes for this decrease are decrease in density, decrease in ground states

due to excitation, fewer emission carriers because o£ ionization, and dis-

placement of atoms and ions by released electrons. I£ the emission carrier

is an ion, then n_0 will first increase with rising temperature, and after



passing through a maximum will fall monotonically to zero, because the

same causes for the decrease are first overwhelmed by an increase in

newly formed atoms. In any case, these conditions lead to the fact that

¢ passes through a maximum at a specific temperature. At this same

temperature, every other function, which differs from c by a constant

factor, also has a maximum. Therefore, the temperature at which this

maximum occurs can be calculated. We define this as temperature norm

so that according to the normalization shown in (3), E_(T,P) becomes

equal to I in the maximum.

The maximum of the function _(T,P) must also appear as a maximum

in the radial function of the emission coefficient _ (r) and that of the

measured relative function E'(r). If _ is the radius, at which such a maxi-

mum occurs, then at a distance from the axis 3, the temperature T, ob-

viously occurs and therefore, as required above, a certain radius corre-

sponds to a temperature norm as determined from the measured function

c'(r) and the calculated function c*_f,P_ One obtains _(r) by normalizing

the relative function E'(r), which was obtained from the center-boundary

variation, in such a way that it becomes equal to unity at its maximum,

and then, according to the simple graphic method based on the relationship

_* (r) ----e* [T, P]

the radial temperature variation T(r) can be determined.

The determination of the center-boundary variation of the radiation

density for the measurement of temperature requires two tasks: first,

the function E*(r) must be determined by solving Abel's integral equation.

Secondly, t*(T,P) must be calculated. The first task is of a purely formal

nature. The systematic solution has already been treated in detail by H_r-

mann and can be passed over here. In the appendix of the next report a

method of solution will be explained which, although somewhat less syste-

matic, has been very useful if very many curves must be evaluated. The

second task, the calculation of E(T,P) needs a somewhat more detailed

treatment. Before this is done the principles of the method must be ex-

plained in more general terms.

It appears at first that the measurement of the radial temperature
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distribution is only then possible when the axis temperature actually exceeds
%.

the value T. It is immediately apparent that this limits its application much

too severely. Because, if we have a standard light source where for a spe-

cified emission line the critical temperature is exceeded, then in all light

sources which emit the same line with the same function E(T,P) and at the

same pressure, temperature measurements can also be made even if _ has

not been reached. We only have to be concerned that the radiation densities

measured from the light sources can be related to those measured from the

standard light source. Then the solution of equation (4a) yields in every case

immediately the function

I

as defined in (4b). For clarity the units which refer to measurements of the

standard light source are designated by n. Then the required function is

**(r)= '(') _.(o) ,'(,) I(o) eI(o),
_.(o),.(,-)=Y.(,) 4(0)

which has to be substituted in equation (3) to determine the temperature.

In order to explain this principle on which the temperature measure-

ment is based, we first dealt with the measurement of a line. However,

there are no changes in principle when dealing with the center-boundary

variation of the radiation density in a spectral region of continuing emis-

sion. Only in this case, radiation density and emission coefficient must be

related to the unit of the frequency scale. Furthermore, the dependence of

the emission coefficient in the continuum on T and P must be ascertainable.

The conditions are generally complicated by lhe fact that several continua

of different emission mechanisms contribute :o the emission. The measure-

ment of a single line only yields the relative course of the function ¢(T,P),

but not its absolute value, This will also be true in the presence of several

continua if the relative dependence of the particular continua on tempera-

ture is the same. GeneraLly, however, the dif:_erentmechanisms of emission

cause differences in their relative temperature dependence, which permits

determination of the absolute value for the different emission contributors,

or at least determination of their relationship in Ev*(T,P ). Here the calcu-
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lation of Ev*(T,P) presents somewhat greater difficulties for the theoretical

understanding of the emission.

Previously, at the start of this paragraph, it was pointed out that for

the utilization of this method two general requirements are necessary. It

is assumed, first, that the fiction of local temperature equilibrium is suffi-

ciently approached, and secondly, that the seLf-absorption of emission

frequencies used for measurements is very small. Two remarks will follow

dealing with the possibility of how to control the fulfilment of those require-

ment S.

The result could demonstrate that the first requirement had not been

fulfilled if measurements of lines with different excitation potentials, or of

lines of different ionization levels, and measurements of significantly differ-

ent continuum frequencies, lead to significantly different temperature

distributions. It is thus possible to prove experimentally that the first

requirement has been fulfilled.

The fuLfiLment of the second requirement also can be tested. Such pos-

sibilities are only indicated here. Since the absorption within a line varies

greatly with frequencies and its effect on the total radiation density cannot

simply be overlooked, measurements of lines will be based on the absorp-

tion in the line center. We, therefore, base the control of line measure-

ments, as weLl as measurements on continuous emission, on the radiation

density which can be related to the units of the frequency scale. Then, in

every case, the control consists of an estimation of the optical layer thick-

ness on the observed ray for the particular frequency. The basis for a

systematic estimation of a layer thickness can be found in a theory of

emission from an in.homogeneous layer developed by H. Bartels [6].

The equations on which this estimate is based are briefly stated here.

Assume that

is the yield (K =absorption coefficient). It is further assumed that dT= Kdx

the optically measured path element, and that-_T is the average value of the

yield measured over the optical standard. Then the relationship
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is a function of the optical layer thickness To and of a parameter __p, which

may vary between 0 and 1, and depends on the relative distribution of the

yield over the optical standard. The function Y(T 0,p) was calculated by

Bartels. For thin layer thicknesses (T o < 1) is a sufficient approximation

Y (Te.p) = To-- -_- -t- (3 + P) q-"'.

showing that Y is barely dependent on p. In order to estimate the layer

thickness, it is necessary to measure absolutely the radiation density and

to estimate the average value'_ro In many cases the second requirement is

secured even if only the order of magnitude of the layer thickness is esti-

mated. This requires only a rough measurerr_ent of I v and an estimate of

_T based on temperature data resulting from the apparent ionization levels.

!

§3. CONCERNING THE CALCULATION E(T,P)

The calculation of E is dealt with here only in so far as it concerns its

determination in a general way. It is sufficient if we assume a column

which burns in a univalent atomic gas. The extension to a gas mixture intro-

duces nothing new and may be accomplished without difficulties [7]. For the

same reason, we will only deal with the measurement of a Line when formu-

lating the method of calculation.

It is assumed that n i (i = 0, I, 2, ... i ...) is the number adjusted for unit

v-_ue Uji the ionization potential, and u i the sum of the states of the atoms

ionized to the i th degree, P the gas pressure and Pe the electron pressure.

The carrier of the Line emission is the atom ionized to the I th degree, the

excitation voltage of the line is Ua, the weight of the initial ga" The ioniza-

tion levels which have to be considered in the calculation have the upper

limit i-- z. For the calculation of E the following is available:
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a) the equation for

z'/ L:'a . _l " e-- --

e_
kT (s)

b) the Saha equation:

F

5
4

(6)

c) the gas equation:

P: [no-k-2nx +3n, +". + (z + t) n,] kT,

P,= [n x+2n_,A-... +zn,]kT.

(7a)

(Tb)

If the equation for continuous emission were to be formulated, then equation

(5_ is to be substituted by an equation for _v, in which in addition to the

known functions of T, ni-values also appear. In any case, the problem is

reduced to the determination of n i from the equations (6), (7a), and (7b) .

From (6) the following results:

for i=0

P--Pe I
_O-- kT , i-1 ' (8a)

for i=I,2 ... 1... z

k/" • '-' (Sb)

i=1 =

Substituting in (7b) then yields in the usual manner the equation from which

Pe as a banction _f P and T can be determined:
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With the solution Pe(T,P) of equation (9) one obtains from (8) the functions

ni{T,P ), which--substituted in equation (5) for ¢ or the respective expres-

sion for %mresults in the functions ¢(T,P) or %(T,P). From these, after

dividing by the maximum values _(T,P) or ev(T,P), the functions ¢*(T,P) or

¢_(T,P) are determined, which are used as the basis for the evaluation.

In general, in solving equation (9) one is limited to graphic methods or

suitable iteration methods. Only in the P- T regions, in which only 2 ioniza-

tion levels appear in noticeable concentrations, can (9) be reduced to a

quadratic equation with sufficient approximation. Particularly in cases

where, in addition to the neutral atom only a simple charged ion occurs,

!

-V"F
(lo)

substituting in (8a) or (8b) yields in this case

k-_-{ __[_ p_,]} (lla)no= t --2 q-_'e '

]'%= *T F, t . (lib)

The temperature region in which temperature measurements can be

carried out according to this method for lines of certain kinds of atoms or

ions, is determined by the parameters which define T. Thus we ask: what

relationship exists between T--and at the same time the respective meas-

urement region--and the excitation voltage of the line, the weights, the

ionization potential of the emission carriers, :)r the pressure? A suffi-

ciently complete view of these relationships can be obtained, if for

simplification of the calculations it is assumed that no more than two

ionization levels occur at the same time in noticeable concentration, and

that the sum of the states can be replaced by the weights of the respective

ground states [8]. In this frame of reference we deal with two cases: in
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the first case we deal with temperature measurements of an arc line, and

in the second case we assume the atom ionized to the lth degree as an

emission carrier.

In the first case.according to (5)

_=/A_hv _,.no.e kr
4_ go

I

It is possible to substitute for no

1--c .P

no--1+c ,r (12)

with the ion concentration c [9] • The Saha equation then becomes

c' (2n,.)i gt (13)1-c_--{'P---F= _ 2_.(kT)le hrgo

if • is differentiated with respect to kT mdifferentiations with respect to kT

will be designated by a periodDand if the differential quotient is set equal

to zero. we obtain the equation

t-c- t 1-c t-c ,u. =0, (14)
[T VT] k r,+_ +t+_ (kr),

from which T must be determined. However,

and according to (1 3)

= (t + c)'

(t -- el) I

2_ • h-rf- 
c I eV1" S (lSa)
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and also

[_-c]. t-c r_uj _}_-_ -- , +;'ct-_- ÷ . (15b)

If we set the ion concentration c(T) - _, then according to (ISb) we get from

(14)

e_

__ k_ (16)
eui___. + s__
AT 2

and after combination with (13) as the final equation for

t t

(2=,,,)1. el 2
hJ

g. P (,v,/,._+_
eui 5 z

eUa--t I
k_ j

'. (iv)

Lr_
I

For the solution of this transcendental equation and its dependency on P and

Uj, a graphic representation is simplest. We set eUj/kT = _ and Ua/U j =a,

further we substitute for the constant factor on the left-hand side a measure-

ment factor which permits us to measure P _n atmospheres and set

go. "_A'm.L= X, (18)
gx U/[volt ]

so that the graphic representation is based on the equation

In Figure I, the logal-ithrns of the left and right hand side are found in terms

of different values for the parameters K and a. The point of intersection cor-

responding to a given pair of a, K yields on the abscissa the solution

- eUj/kT, which corresponds to this pair of parameters. The variation of

K is sufficiently Limited by
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10 .7 < K < 1

I

if one considers that the application of this method at rising pressures is

limited by the increasing absorption, a cannot reach the value 1, as long

as a line is measured, but it will not reach a value below 0.4. From the

diagram one obtains at first formally: g varies in the opposite direction,

with a when K is held constant and with K if a is held constant, but not to

the same degree. In particular, a change in K by an order of magnitude

yields only a variation in g of 20 to 25%. From (18) follows that for

constant excitation potential changes in pressure or ionization potential

cause on.ly small changes in g = eUj/kT. This means on the one hand that

temperature _" increases only very little with pressure at fixed ionization

l

,_
_7

-7
7J'

•_ > ,,

I • I II I II I I

Fig. 1. For the solution of the transcendental
equation (17).

_r g + 72
= 1.03. i0-, K gl ,g, _J - 1.

potential, and on the other hand, with fixed pressure T increases to an al-

most equal measure with the ionization potential, because of the way g

approaches a constant value. From the diagram one can also get certain

values for "_: at an ionization potential of 10 volts, a pressure of 1 atm.

with g0/gl = 1 and a =0.8, g becomes equal to 10, or _'"-_IZ,000°K. For

the lines of the Balmer series at the same pressure the average

T I,.el6,000"K.

If, as is assumed in the second case above, the emission carrier is the

_h degree ionized atom, then
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,v,
A

= hvg__J.nl.eAr
• -_ gJ

with

t -- cl+ x P

and the Saha equation

1--cz+z (I-I-I)q-c_+x

._q-

!

is valid. In analogous manner as above, for _'I+I' the concentration of the

(I+ l)th degree ionized atom results at temperature T,

By combination with (21) there results in parallel to (17)

, ., ,, P
(2rim)|'| 2 gl+x U_ t k_ ]

ha

'uit+ 5 },u. t+, T_-_ _-_+_-t

kT

(I+ I)+Zt+ _

+ Vg+,

(23)

Although here, in contrast to (17), _ stillap?ears implicitly--in _ -- equation

(Z3) is sufficient to show, that with constant Ujl the solution for _ does not

change significantly from the solution in the first case. The left-hand side

of (23) completely corresponds to the left-hand side of (17), so that nothing

changes in the graphic representation of the corresponding curves. The

right-hand side is somewhat modified: instead of the quadratic expression

l eUi + 5 ]z

_Z
eU.
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the fraction itself appears. In addition, it contains a newly appearing factor

as well as the braces on the right-hand side. Particularly, when dealing

with higher ionization levels, both of these factors have values within narrow

limits and only little larger than 1. Furthermore, they change with T in the

same sense as the quotient

LO
!

e_
k_

The right-hand side of equation (23) decreases monotonically with increasing

g just as does the right-hand side of equation (17). The curves in the dia-

gram corresponding to a given value of a, as can be seen from (23), are

displaced toward lower values compared to the corresponding curves in (17).

One can see, however, that the solution of g at constant K values is changed to

only insignificantly smaller values of g. Somewhat strongerobut in the

opposite directionmis the effect of the higher ionization potential on the de-

crease in K values. In general, the T values for the transition from neutral

atoms to the successive ionization levels will behave as the respective ioniza-

tion potentials.

U

or t" J f I t L
_8_ ,_ J_ _'_ ._LI_ *K

r--.-

Fig. 2. a*(T,P) functions for oxygen arc and
spark lines (P- 1 atm.) .

For example, for _*(T,P) functions, curves were chosen which were

used for measurements of the Gerdien arc. The Gerdien arc burns in an

atomic gas mixture with hydrogen and oxygen appearing in the ratio 2 : 1.

Fig. 2 shows the E*(T,P) functions for each of one line of O I, OII and

O HI. The fact that these curves refer to components of a mixture is here
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Of no concern. They show that measurements of lines of a given emission

carrier are only possible within a limited temperature region. This region is

limited on both sides by the lowest values to which E*(r) can be measured.

However, the regions corresponding to the individual ionization levels gen-

eraUy lie so close to each other that generally measurement can proceed

to the lines of the next higher ionization level without a significant hole.

It is shown in Fig. Z that the curves embrace in their entirety a region from

10,000 to 60,000°K.

As already pointed out in the introduction, the method developed here

for temperature measurements is built on the same basis as the methods

which Fowler and Milne used for the ordering of stellar classes in a tem-

perature scale. The development of the basis for calculation as given in

these paragraphs makes the differences app_trent which are caused by the

significantly different type of problem encountered. When measuring the

temperature changes in an arc column, the total pressure is given as a

constant parameter, and the electron pressure must be calculated using

equation (9) as function of pressure and temperature. In the determination

of stellar classes the relationships are different. Instead of a statement

on the total pressure, Fowler and Milne use a statement regarding the

electron pressure which is determined from the conditions prevailing in

the stellar atmosphere. This makes the solution of equation (9) unneces-

sary.

The observations in these paragraphs p.'imarily dealt with temperature

measurements of lines. In the temperature ',ariation of continua/ emission,

the portion representing the end continua of the neutral atoms leads to a

decided maximum. Further maxima can appear due to limiting continua of

newly appearing types of ions. However, if they do appear in the tempera-

ture variation of the basic continua, they will be only little different, and

therefore less suitable for measurement. F_r the first maximum, the

equations in these paragraphs can be used.

L_
!

14. REGARDING CAUSE<_ OF ERROR

THE EVALUATION

Errors arise in this manner of evaluation if "_he parameters used i_ t_e

evaluation are not substituted with their proper values. The po_-ition of the
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maxima which determine the norm temperature T, and the shape of the

curves which is determined from measurements of other temperatures, are

dependent on pressure, ionization potentials, excitation potentials, and

weights. Excitation potentials and weights are sufficiently known so that

they do not cause errors. On the other hand, as was shown first by Rompe

and Schulz, the ionization potential of plasma can decrease to such an

extent that it can only be roughly estimated in many cases. Furthermore,

the determination of the pressure may contain considerable uncertainty

under several experimental conditions. It is, therefore, necessary to deter-

mine to what extent these uncertainties will affect the result.

For temperature T_ errors appear in the approximation of (17)

or (23) if the small variability of the right-hand side is neglected because

of the much larger variability of the left-hand side. We denote with Uj, T

and P the true value, and with A_" the deviation from "r due to the errors

AUj or AP. This results in the measurements of arc as well as spark lines

in

A_ AP
=+ p _+j. (2hb)

However, when ionization tension and pressure are faulty, not only the maxi-

mum, but the entire curve c*(T,P) moves. Then if the error is to be

pursued over the entire temperature scale, the calculation has to be built

on a broad basis. At the same time the approximation formula (24) can be

defined. The errors occur due to the fact that the c value, which was

measured for the radius r, because of the deformation of the curve re-

ceives a temperature T +AT instead of the correct temperature T. There-

fore, the relative error AT/T corresponds to the temperature change

which is obtained if one determines E*(T,P, Uj) at constant E* by varying

first the ionization potential Uj by AUj at constant pressure and then the

pressure P by AP at constant ionization potential.

If the error in measuring an arc line is calculated in this manner, the

result is
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I / _r¢'j
,,.1_/ : ':,

| ",.

w mr_ _'H

Fig. 3. For the interpretation of the function

_Uj(T).

I

_ r , tri
AT AU i kT r AU i kr
T =+ o-_ ,t,-j s ,u, u; ,,v_ s-_c,_(_, (2_)

kr f 2 k-_ --_ iT ) 2
C

eU_ S
AT ÷2

AT Ap t c--_ AP I
_=4 = ('2_'b)

r P eUi "t- 5 ¢U a P cUy 5 _p(T).
AT 2 k----T -_ kT f a

c

kr)_

Both functions @T can be clearly interpreted. This is shown for _ Uj(T). For

this purpose

T
c, _-_ and

T

,u,
__m i
AT

is superimposed over T in Fig. 3. The example is based on a measurement

of H a. From the general characteristics of the curves it can be seen that

_Uj(T) changes only a small amount in the w.cinity of T, and that it is al-

ways positive and less than I. For significantly lower temperatures,

_Uj(T) gets smaJ.ter. The same is true for higher temperatures. Here

_Uj(T) can even pass through zero. But in that case the concentrations of



19

u_
I

the neutral atoms become so small that it probably almost reaches the

limit of the temperature region which can be measured. It seems at first

that the interpretation of the function _Uj(T) up to this temperature limit

is only meaningful for hydrogen since with other atoms the appearance of

doubly charged ions negates the assumption for the calculation. However,

the resu.tts shown in the example in Fig. 3 can be applied also to higher

temperatures of other atoms, since c within the framework of the calcula-

tion actuaUy onty measures as l - c the disappearance of the neutral atoms,

and c, therefore, with the appearance of the next higher ionization levels is

equally effective as concentrations of all ions. Completely analogous con-

siderations can be made for Sp(T). We can therefore conclude generally,

that for the whole temperature range to be considered for measurement in

arc lines, the following is valid:

eu_

[AT] <_Uj kT 5 ' (26a)T Ui • u i
-by+2

I'_rL< "/--C-e• ' (26b)
T P e Ui 5

_Tt2

In a completely analogous way, both equations also can be proven for meas-

urements in spark lines.

Hannover, Physical Institute of the Technical CoLlege,

December 1950

FOOT NOT ES

[1] In the next report, measurements of the Gerdien arc up to 34,000°K

will be given.

[Z] H. H_rmann, Z. Physik, 97, p. 539, (1935).

[3] R. H. Fowler, Statistische Mechanik, Leipzig, 1931. Refer also A.

Uns6ld, Physik der Sternatmosph_ren (Physics of SteUar Atmospheres),

BerLin, (1938). Contains extensive literature references.
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[4] H. Bartels, Z. Physik, IZ7, p. 243, (1950); 128, p. 546, (1950).

[5] H. H6rmann, Z. Physik, 97, p. 539, (1935).

[6] H. Bartels, Z. Physik0 125, p. 597, (1949); 126, p. 108, (1949).

[7] In view of the high temperatures, only atomic Eases can be consid-

ered as components of the mixtures.

[8] If one calculates e(T,P) for application to specific quantitative

measurements, then these simplifications are not always valid, and must

be explained at least from case to case.

[9] Since we are dealing here only with one kind of ion,

-- Wlfor c and F are unnecessary. Generally, the term ,_=

concentration of atoms ionized to the l th degree. ,_0

the subscripts

refers to the
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